Keras Complex

Jesper Dramsch, Chiheb Trabelsi, Olexa Bilaniuk, Bruce Sharpe, '

TABLE OF CONTENTS

1 Contents					
		Introduction			
		Installation			
	1.3	complexnn	3		
		How to Contribute			
	1.5	Implementation and Math	4		
	1.6	Citation	6		
2	Indic	ees and tables	7		
Bibliography					

Complex-valued convolutions could provide some interesting results in signal processing-based deep learning. A simple(-ish) idea is including explicit phase information of time series in neural networks. This code enables complex-valued convolution in convolutional neural networks in keras with the TensorFlow backend. This makes the network modular and interoperable with standard keras layers and operations.

TABLE OF CONTENTS 1

2 TABLE OF CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Introduction

Complex-valued convolutions could provide some interesting results in signal processing-based deep learning. A simple(-ish) idea is including explicit phase information of time series in neural networks. This code enables complex-valued convolution in convolutional neural networks in keras with the TensorFlow backend. This makes the network modular and interoperable with standard keras layers and operations.

1.2 Installation

Installation is as easy as

```
pip install keras-complex
```

The requirements are:

```
tensorflow >= 2
numpy
scipy
scikit-learn
```

1.3 complexnn

1.3.1 complexnn package

Submodules

complexnn.bn module

complexnn.conv module

complexnn.dense module

complexnn.fft module

complexnn.init module

complexnn.norm module

complexnn.pool module

complexnn.utils module

Module contents

1.4 How to Contribute

You can add a Pull Request on Github.

1.4.1 Test

Make sure the tests pass and new features have at least unittests to cover the new functions.

These tests should run with pytest.

1.4.2 Documentation

New features should be documented in the docs/ folder, which will be automatically generated on readthedocs.org.

1.5 Implementation and Math

Complex convolutional networks provide the benefit of explicitly modelling the phase space of physical systems [TBZ+17]. The complex convolution introduced can be explicitly implemented as convolutions of the real and complex components of both kernels and the data. A complex-valued data matrix in cartesian notation is defined as $\mathbf{M} = M_{\Re} + i M_{\Im}$ and equally, the complex-valued convolutional kernel is defined as $\mathbf{K} = K_{\Re} + i K_{\Im}$. The individual coefficients $(M_{\Re}, M_{\Im}, K_{\Re}, K_{\Im})$ are real-valued matrices, considering vectors are special cases of matrices with one of two dimensions being one.

1.5.1 Complex Convolution Math

The math for complex convolutional networks is similar to real-valued convolutions, with real-valued convolutions being:

$$\int f(y) \cdot g(x-y) \, dy$$

which generalizes to complex-valued function on \mathbf{R}^d :

$$(f * g)(x) = \int_{\mathbf{R}^d} f(y)g(x - y) \, dy = \int_{\mathbf{R}^d} f(x - y)g(y) \, dy,$$

in order for the integral to exist, f and g need to decay sufficiently rapidly at infinity [CC-BY-SA Wiki].

1.5.2 Implementation

Solving the convolution of, implemented by [TBZ+17], translated to keras in [DC19]

Fig. 1: Complex Convolution implementation (CC-BY [TBZ+17])

$$M' = K * M = (M_{\Re} + iM_{\Im}) * (K_{\Re} + iK_{\Im}),$$

we can apply the distributivity of convolutions to obtain

$$M' = \{M_{\Re} * K_{\Re} - M_{\Im} * K_{\Im}\} + i\{M_{\Re} * K_{\Im} + M_{\Im} * K_{\Re}\},$$

where K is the Kernel and M is a data vector.

1.5.3 Considerations

Complex convolutional neural networks learn by back-propagation. [SSC15] state that the activation functions, as well as the loss function must be complex differentiable (holomorphic). [TBZ+17] suggest that employing complex losses and activation functions is valid for speed, however, refers that [HY12] show that complex-valued networks can be optimized individually with real-valued loss functions and contain piecewise real-valued activations. We reimplement the code [TBZ+17] provides in keras with tensorflow , which provides convenience functions implementing a multitude of real-valued loss functions and activations.

[CC-BY [DLuthjeC19]]

1.6 Citation

Find the CITATION file called CITATION.cff on Github or cite this software version as:

```
@misc{dramsch2019complex,
    title = {Complex-Valued Neural Networks in Keras with Tensorflow},
    url = {https://figshare.com/articles/Complex-Valued_Neural_Networks_in_Keras_
    with_Tensorflow/9783773/1},
    DOI = {10.6084/m9.figshare.9783773},
    publisher = {figshare},
    author = {Dramsch, Jesper S{\"o}ren and Contributors},
    year = {2019}
}
```

Please cite the original work as:

```
@ARTICLE {Trabelsi2017,
    author = "Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep...
    Subramanian, João Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio,...
    Christopher J Pal",
    title = "Deep Complex Networks",
    journal = "arXiv preprint arXiv:1705.09792",
    year = "2017"
}
```

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

BIBLIOGRAPHY

- [DC19] Jesper Soeren Dramsch and Contributors. Complex-valued neural networks in keras with tensorflow. 2019. URL: https://figshare.com/articles/Complex-Valued_Neural_Networks_in_Keras_with_Tensorflow/9783773/1, doi:10.6084/m9.figshare.9783773.
- [DLuthjeC19] Jesper Sören Dramsch, Mikael Lüthje, and Anders Nymark Christensen. Complex-valued neural networks for machine learning on non-stationary physical data. *arXiv preprint arXiv:1905.12321*, 2019.
- [HY12] Akira Hirose and Shotaro Yoshida. Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. *IEEE Transactions on Neural Networks and Learning Systems*, 2012.
- [SSC15] Andy M. Sarroff, Victor Shepardson, and Michael A. Casey. Learning representations using complex-valued nets. *CoRR*, 2015. URL: http://arxiv.org/abs/1511.06351, arXiv:1511.06351.
- [TBZ+17] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, João Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J Pal. Deep complex networks. *arXiv preprint arXiv:1705.09792*, 2017.